Combinations of Mutations Sufficient to Alter Arabidopsis Leaf Dissection

نویسندگان

  • Thomas Blein
  • Véronique Pautot
  • Patrick Laufs
چکیده

Leaves show a wide range of shapes that results from the combinatory variations of two main parameters: the relative duration of the morphogenetic phase and the pattern of dissection of the leaf margin. To further understand the mechanisms controlling leaf shape, we have studied the interactions between several loci leading to increased dissection of the Arabidopsis leaf margins. Thus, we have used (i) mutants in which miR164 regulation of the CUC2 gene is impaired, (ii) plants overexpressing miR319/miRJAW that down-regulates multiple TCP genes and (iii) plants overexpressing the STIMPY/WOX9 gene. Through the analysis of their effects on leaf shape and KNOX I gene expression, we show that these loci act in different pathways. We show, in particular, that they have synergetic effects and that plants combining two or three of these loci show dramatic modifications of their leaf shapes. Finally, we present a working model for the role of these loci during leaf development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis.

The role of starch synthase (SS) III (SSIII) in the synthesis of transient starch in Arabidopsis (Arabidopsis thaliana) was investigated by characterizing the effects of two insertion mutations at the AtSS3 gene locus. Both mutations, termed Atss3-1 and Atss3-2, condition complete loss of SSIII activity and prevent normal gene expression at both the mRNA and protein levels. The mutations cause ...

متن کامل

Repeated Evolutionary Changes of Leaf Morphology Caused by Mutations to a Homeobox Gene

Elucidating the genetic basis of morphological changes in evolution remains a major challenge in biology. Repeated independent trait changes are of particular interest because they can indicate adaptation in different lineages or genetic and developmental constraints on generating morphological variation. In animals, changes to "hot spot" genes with minimal pleiotropy and large phenotypic effec...

متن کامل

Trichome cell growth in Arabidopsis thaliana can be derepressed by mutations in at least five genes.

Leaf trichomes in Arabidopsis are unicellular epidermal hairs with a branched morphology. They undergo successive endoreduplication rounds early during cell morphogenesis. Mutations affecting trichome nuclear DNA content, such as triptychon or glabra3, alter trichome branching. We isolated new mutants with supernumerary trichome branches, which fall into three unlinked complementation groups: K...

متن کامل

Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development.

Maize ROUGH SHEATH2 (RS2) and Arabidopsis ASYMMETRIC LEAVES1 (AS1) are orthologous Myb-related genes required for leaf development and act as negative regulators of class 1 KNOTTED1-like homeobox (KNOX) genes in leaf primordia. Expression of RS2 in Arabidopsis fully complements as1 leaf phenotypes and represses the expression of the KNOX gene KNAT1 in leaves. Whereas loss of AS1 function in Ara...

متن کامل

Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)

In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013